Friday, 21 June 2013

PROJECT EULER SOLUTION # 67

Solution to problem number 67 of Project Euler.
Question # 67
By starting at the top of the triangle below and moving to adjacent numbers on the row below, the maximum total from top to bottom is 23.
3
7 4
2 
4 6
8 5 
9 3
That is, 3 + 7 + 4 + 9 = 23.
Find the maximum total from top to bottom in triangle.txt (right click and 'Save Link/Target As...'), a 15K text file containing a triangle with one-hundred rows.
NOTE: This is a much more difficult version of Problem 18. It is not possible to try every route to solve this problem, as there are 299altogether! If you could check one trillion (1012) routes every second it would take over twenty billion years to check them all. There is an efficient algorithm to solve it. ;o)

Solution # 67
/***********************************************************************************************************/
#include<stdio.h>
#include<conio.h>
#include<stdlib.h>
#include<time.h>

int get_sum(int *);

int main()
{
       FILE *f;
       int arr[100][100],max1[100],max2[100],i=0,j=0,maximum=0;
      
       f=fopen("D:/e.txt","r");
       i=0;
       for(i=0;i<100;i++)
              for(j=0;j<=i;j++)
              {
                     fscanf(f,"%d",&arr[i][j]);
              }

       for(i=0;i<100;i++)
       {
              for(j=0;j<=i;j++)
              {
                     if(i==0)
                     {
                           max1[j]=arr[i][j];
                           continue;
                     }
                     else if((j-1)<0)
                           max2[j]=arr[i][j]+max1[j];
                     else if(j==i)
                           max2[j]=arr[i][j]+max1[j-1];
                     else
                           max2[j]=arr[i][j]+((max1[j-1]>max1[j])?max1[j-1]:max1[j]);          
              }

              if(i==0)
                     continue;
                    
              for(j=0;j<=i;j++)
                     max1[j]=max2[j];

       }
      
       for(i=0;i<100;i++)
              if(maximum<max2[i])
                     maximum=max2[i];
       printf("Answer = %d\n\n",maximum);
      
       printf("\nEXECUTION TIME = %f\n",clock()/(float)CLK_TCK);
       system("pause");
}
/***********************************************************************************************************/




No comments:

Post a Comment