Solution to problem
number 67 of Project Euler.
Question # 67
By
starting at the top of the triangle below and moving to adjacent numbers on the
row below, the maximum total from top to bottom is 23.
3
7 4
2 4 6
8 5 9 3
That is, 3 + 7 + 4 + 9 = 23.7 4
2 4 6
8 5 9 3
Find the maximum total from top to bottom in triangle.txt (right click and 'Save Link/Target As...'), a 15K text file containing a triangle with one-hundred rows.
NOTE: This is a much more difficult version of Problem 18. It is not possible to try every
route to solve this problem, as there are 299altogether! If you
could check one trillion (1012) routes every second it would take
over twenty billion years to check them all. There is an efficient algorithm to
solve it. ;o)
Solution # 67
/***********************************************************************************************************/
#include<stdio.h>
#include<conio.h>
#include<stdlib.h>
#include<time.h>
int get_sum(int *);
int main()
{
FILE *f;
int arr[100][100],max1[100],max2[100],i=0,j=0,maximum=0;
f=fopen("D:/e.txt","r");
i=0;
for(i=0;i<100;i++)
for(j=0;j<=i;j++)
{
fscanf(f,"%d",&arr[i][j]);
}
for(i=0;i<100;i++)
{
for(j=0;j<=i;j++)
{
if(i==0)
{
max1[j]=arr[i][j];
continue;
}
else if((j-1)<0)
max2[j]=arr[i][j]+max1[j];
else if(j==i)
max2[j]=arr[i][j]+max1[j-1];
else
max2[j]=arr[i][j]+((max1[j-1]>max1[j])?max1[j-1]:max1[j]);
}
if(i==0)
continue;
for(j=0;j<=i;j++)
max1[j]=max2[j];
}
for(i=0;i<100;i++)
if(maximum<max2[i])
maximum=max2[i];
printf("Answer
= %d\n\n",maximum);
printf("\nEXECUTION
TIME = %f\n",clock()/(float)CLK_TCK);
system("pause");
}
/***********************************************************************************************************/
No comments:
Post a Comment