Tuesday, 18 June 2013

PROJECT EULER SOLUTION # 12

Solution to problem number 12 of Project Euler.
Question # 12
The sequence of triangle numbers is generated by adding the natural numbers. So the 7th triangle number would be 1 + 2 + 3 + 4 + 5 + 6 + 7 = 28. The first ten terms would be:
1, 3, 6, 10, 15, 21, 28, 36, 45, 55, ...
Let us list the factors of the first seven triangle numbers:
 1: 1
 3: 1,3
 6: 1,2,3,6
10: 1,2,5,10
15: 1,3,5,15
21: 1,3,7,21
28: 1,2,4,7,14,28
We can see that 28 is the first triangle number to have over five divisors.
What is the value of the first triangle number to have over five hundred divisors?

Solution # 12
/*********************************************************************/
#include<stdio.h>
#include<time.h>
#include<stdlib.h>
#include<conio.h>
#include<math.h>

int no_of_divisors(long);
int main()
{
                int i,counter;
                long tri_no;
               
                for(i=1;;i++)
                {
                                tri_no=(i+1)*i/2;
                                if(no_of_divisors(tri_no)>500)
                                {
                                                printf("\nAnswer = %ld\n",tri_no,i);
                                                break;
                                }
                               
                }
                printf("\nEXECUTION TIME = %f\n",clock()/(float)CLK_TCK);
                system("pause");
}

int no_of_divisors(long num)
{
                long i;
                double s;

                int counter=0;
               
                for(i=1;i<sqrt((double)num);i++)
                                if(num%i==0)
                                                counter++;

                counter*=2;
                s=sqrt((double)num);
                if(s*s==num)
                                counter++;
                return counter;
}
/*********************************************************************/



No comments:

Post a Comment