Question # 12
The sequence of triangle numbers is generated by adding the
natural numbers. So the 7th triangle number would be 1 + 2 + 3
+ 4 + 5 + 6 + 7 = 28. The first ten terms would be:
1, 3, 6, 10, 15, 21, 28,
36, 45, 55, ...
Let us list the factors of the first seven triangle numbers:
1: 1
3: 1,3
6: 1,2,3,6
10: 1,2,5,10
15: 1,3,5,15
21: 1,3,7,21
28: 1,2,4,7,14,28
3: 1,3
6: 1,2,3,6
10: 1,2,5,10
15: 1,3,5,15
21: 1,3,7,21
28: 1,2,4,7,14,28
We can see that 28 is the first triangle number to have over five
divisors.
What is the value of the first triangle number to have over five
hundred divisors?
Solution # 12
/*********************************************************************/
#include<stdio.h>
#include<time.h>
#include<stdlib.h>
#include<conio.h>
#include<math.h>
int no_of_divisors(long);
int main()
{
int
i,counter;
long
tri_no;
for(i=1;;i++)
{
tri_no=(i+1)*i/2;
if(no_of_divisors(tri_no)>500)
{
printf("\nAnswer
= %ld\n",tri_no,i);
break;
}
}
printf("\nEXECUTION
TIME = %f\n",clock()/(float)CLK_TCK);
system("pause");
}
int no_of_divisors(long num)
{
long i;
double
s;
int
counter=0;
for(i=1;i<sqrt((double)num);i++)
if(num%i==0)
counter++;
counter*=2;
s=sqrt((double)num);
if(s*s==num)
counter++;
return
counter;
}
No comments:
Post a Comment