Project Euler Problem # 107
The following undirected network consists of seven vertices and
twelve edges with a total weight of 243.
The same network can be represented by the matrix below.
A
|
B
|
C
|
D
|
E
|
F
|
G
|
|
A
|
-
|
16
|
12
|
21
|
-
|
-
|
-
|
B
|
16
|
-
|
-
|
17
|
20
|
-
|
-
|
C
|
12
|
-
|
-
|
28
|
-
|
31
|
-
|
D
|
21
|
17
|
28
|
-
|
18
|
19
|
23
|
E
|
-
|
20
|
-
|
18
|
-
|
-
|
11
|
F
|
-
|
-
|
31
|
19
|
-
|
-
|
27
|
G
|
-
|
-
|
-
|
23
|
11
|
27
|
-
|
However, it is possible to optimise the network by removing some
edges and still ensure that all points on the network remain connected. The
network which achieves the maximum saving is shown below. It has a weight of
93, representing a saving of 243 − 93 = 150 from the original network.
Using network.txt (right
click and 'Save Link/Target As...'), a 6K text file containing a network with
forty vertices, and given in matrix form, find the maximum saving which can be
achieved by removing redundant edges whilst ensuring that the network remains
connected.
Project Euler Solution # 107 in Python
MAX_INT=2147483647 tree=[] numberOfVertices=40 class GraphNode: visited=0 nodeNumber=0 adjacencyList=[] key=-1 def __init__(self,nodeNumber): self.key=MAX_INT self.adjacencyList=[] self.nodeNumber=nodeNumber self.visited=0 def updateAdjacencyList(self,nodeList,adjacencyMatrix): for i in range(numberOfVertices): if adjacencyMatrix[self.nodeNumber][i]!=-1: self.adjacencyList.append(nodeList[i]) def extractMin(Q,adjacencyMatrix,answer): minNode=None minNodev=None min=MAX_INT for i in range(len(tree)): v=tree[i] for j in range(len(v.adjacencyList)): u=v.adjacencyList[j] if u.visited==0 and adjacencyMatrix[v.nodeNumber][u.nodeNumber] < min : min=adjacencyMatrix[u.nodeNumber][v.nodeNumber] minNode=u minNodev=v answer+=adjacencyMatrix[minNodev.nodeNumber][minNode.nodeNumber] Q.remove(minNode) minNode.visited=1 return [minNode,answer] def isNodeInQ(v,Q): for i in range(len(Q)): if Q[i]==v: return 1 return 0 def MST_Prim(nodeList,adjacencyMatrix): answer=0 nodeList[0].key=0 nodeList[0].visited=1 tree.append(nodeList[0]) Q=[] for i in range(1,numberOfVertices): Q.append(nodeList[i]) while len(Q)!=0: tempList=extractMin(Q,adjacencyMatrix,answer) u=tempList[0] answer=tempList[1] tree.append(u) for i in range(len(u.adjacencyList)): v=u.adjacencyList[i] if isNodeInQ(v,Q)==1 and adjacencyMatrix[u.nodeNumber][v.nodeNumber]<v.key: v.key=adjacencyMatrix[u.nodeNumber][v.nodeNumber] return answer test_file=open("a.txt","r+") adjacencyMatrix=test_file.read().split('\n') for i in range(numberOfVertices): adjacencyMatrix.append(adjacencyMatrix[0].split(',')) adjacencyMatrix.remove(adjacencyMatrix[0]) totalWeight=0 for i in range(numberOfVertices): for j in range(numberOfVertices): if adjacencyMatrix[i][j]!='-': adjacencyMatrix[i][j]=int(adjacencyMatrix[i][j]) totalWeight+=adjacencyMatrix[i][j] else: adjacencyMatrix[i][j]=-1 nodeList=[] counter=0 for i in range(numberOfVertices): nodeList.append(GraphNode(counter)) counter+=1 # updating the adjacency list of each node for i in range(len(nodeList)): nodeList[i].updateAdjacencyList(nodeList,adjacencyMatrix) # applying Prim's Algorithm for finding Minimum Spanning Tree reducedWeight=MST_Prim(nodeList,adjacencyMatrix) print "Savings :", totalWeight/2-reducedWeight
No comments:
Post a Comment