Friday, 1 November 2013

PROJECT EULER SOLUTION # 60


Solution to problem number 60 of Project Euler.
Question # 60
The primes 3, 7, 109, and 673, are quite remarkable. By taking any two primes and concatenating them in any order the result will always be prime. For example, taking 7 and 109, both 7109 and 1097 are prime. The sum of these four primes, 792, represents the lowest sum for a set of four primes with this property.
Find the lowest sum for a set of five primes for which any two primes concatenate to produce another prime.

Solution # 60
/**********************************************************************/
#include<stdio.h>
#include<math.h>
#include<stdlib.h>

#define max 1000000

int arr[max]={0};

void set_arr();
int is_prime(long int);
int is_conPrime(long int, long int);

int main()
{
      long int i,sum=0,a,b,c,d,e,min=2147483647;
      set_arr();
      for(a=3;a<10000;a+=2)
            if(arr[a])
                  for(b=3;b<10000;b+=2)
                        if(arr[b] && is_conPrime(a,b))
                              for(c=3;c<10000;c+=2)
                                    if(arr[c] && is_conPrime(a,c) && is_conPrime(b,c))
                                          for(d=3;d<10000;d+=2)
                                                if(arr[d] && is_conPrime(a,d) && is_conPrime(b,d) && is_conPrime(c,d))
                                                      for(e=3;e<10000;e+=2)
                                                            if(arr[e] && is_conPrime(a,e) && is_conPrime(b,e) && is_conPrime(c,e) && is_conPrime(d,e))
                                                            {
                                                                  printf("%ld %ld %ld %ld %ld\nsum = %ld",a,b,c,d,e,(a+b+c+d+e));
                                                                  exit(1);
                                                            }


      return 0;
}

void set_arr()
{
      int i;
      for(i=2;i<max;i++)
            if(is_prime(i))
                  arr[i]=1;
}

int is_prime(long int n)
{
      long int i;
      if(n==1)
            return 0;
      if(n==2)
            return 1;
      if(n%2==0)
            return 0;
      for(i=3;i*i<=n;i+=2)
            if(n%i==0)
                  return 0;
      return 1;
}

int count_digits(long int n)
{
      int counter=0;
      while(n)
      {
            counter++;
            n/=10;
      }
      return counter;
}

int is_conPrime(long int a,long int b)
{
      long int num1,num2;
      num1=a+b*(long)pow(10,count_digits(a));
      num2=b+a*(long)pow(10,count_digits(b));
      if(is_prime(num1) && is_prime(num2))
            return 1;
      return 0;
}
/**********************************************************************/

No comments:

Post a Comment