Solution to problem
number 97 of Project Euler.
Question # 97
The first known prime found to exceed one million digits was discovered in
1999, and is a Mersenne prime of the form 269725931; it contains exactly
2,098,960 digits. Subsequently other Mersenne primes, of the form 2p1, have been found which
contain more digits.However, in 2004 there was found a massive non-Mersenne prime which contains 2,357,207 digits: 2843327830457+1.
Find the last ten digits of this prime number.
Solution # 97
/**********************************************************************************/
#include<stdio.h>
#include<time.h>
#include<stdlib.h>
int tmp[10];
int arr[10];
void fun();
void add();
int main()
{
int i;
long j;
for(i=0;i<10;i++)
tmp[i]=arr[i]=0;
arr[9]=1;
/*the
following loop computes last 10 digits of
2^7830457 */
for(j=0;j<7830457;j++)
fun();
for(i=0;i<28433;i++)
add();
tmp[9]+=1;
for(i=0;i<10;i++)
printf("%d",tmp[i]);
printf("\nEXECUTION
TIME = %f",clock()/(float)CLK_TCK);
system("pause");
}
void fun()
{
int i;
for(i=9;i>=0;i--)
{
arr[i]*=2;
}
for(i=9;i>=0;i--)
{
if(arr[i]>9)
{
if(i!=0)
{
arr[i-1]+=1;
arr[i]%=10;
}
if(i==0)
arr[i]%=10;
}
}
}
void add()
{
int i;
for(i=9;i>=0;i--)
{
tmp[i]+=arr[i];
}
for(i=9;i>=0;i--)
{
if(tmp[i]>9)
{
if(i!=0)
{
tmp[i-1]+=1;
tmp[i]%=10;
}
if(i==0)
tmp[i]%=10;
}
}
}
/**********************************************************************************/
No comments:
Post a Comment