Wednesday, 4 September 2013

PROJECT EULER SOLUTION # 47


Solution to problem number 47 of Project Euler.
Question #47
The first two consecutive numbers to have two distinct prime factors are:
14 = 2 ×7
15 = 3 ×5
The first three consecutive numbers to have three distinct prime factors are:
644 = 2² ×7 ×23
645 = 3 ×5 ×43
646 = 2 ×17 ×19.
Find the first four consecutive integers to have four distinct prime factors. What is the first of these numbers?
Solution #47
/***********************************************************************************************************/
#include<stdio.h>
#include<stdlib.h>
#include<time.h>
#include<math.h>

int no_of_distinct_prime_factor(long);
int no_of_distinct_prime_factor(long);
int is_prime(long);

int main()
{
       long c=4,i,tmp,j;
       int flag;
      
       for(i=2;;i++)
       {
              flag=1;
              for(j=0;j<c;j++)
                     if(!(c==no_of_distinct_prime_factor(i+j)))
                     {
                           flag=0;
                           break;
                     }
             
              if(flag)
              {
                     printf("Answer = %d\n",i);
                     break;
              }
       }
      
       printf("Execution time = %f\n",clock()/(float)CLK_TCK);
       system("pause");
}


int no_of_distinct_prime_factor(long n)
{
       int i,counter=0;
       long product=1;
       if(is_prime(n))
              return 1;
       for(i=2;i<=n/2;i++)
       {
              if(product*i > n)
                     break;
              if(n%i==0 && is_prime(i))
              {
                     product*=i;
                     counter++;
              }
       }
       return counter;
}


int is_prime(long n)
{
       int i;
       for(i=2;i<=(long)sqrt((double)n);i++)
              if(n%i==0)
                     return 0;
       return 1;
}
/***********************************************************************************************************/
OUTPUT:-

1 comment: